西安建筑科技大学冶金工程学院;江西省科学院应用化学研究所;
随着化石能源的消耗和人们对清洁可再生能源需求的不断增加,开发新型储能材料刻不容缓。钠离子电池因钠资源丰富,在大规模储能方面成为继锂离子电池之后最具前景的二次电池。电池的负极材料对电池的电化学性能有着重要的影响,二硫化锡作为钠离子电池的负极材料具有高理论比容量、易于调控的形貌和优异的循环稳定性等特点,引发研究人员的广泛关注。对二硫化锡的结构以及作为钠离子电池负极材料的钠化机理进行了总结,概括了提高其电化学性能的一些方法,最后对二硫化锡负极材料在钠离子电池中面临的挑战和发展前景进行了总结和展望。
440 | 0 | 34 |
下载次数 | 被引频次 | 阅读次数 |
[1]乔亚峰,万小涵,马文会,等.热等离子法制备锂离子电池硅碳负极材料[J].有色金属工程,2023,13(8):28-35.QIAO Yafeng,WAN Xiaohan,MA Wenhui,et al.Preparation of silicon/carbon composite by thermal plasma method for lithium-ion battery application[J].Nonferrous Metals Engineering,2023,13(8):28-35.
[2]李宝犬,徐津,王利,等.负极添加剂对镍氢电池性能的影响[J].有色金属工程,2022,12(4):7-12.LI Baoquan,XU Jin,WANG Li,et al. Effect of anode additives on performance ofnickel metal hydride batteries[J]. Nonferrous Metals Engineering,2022,12(4):7-12.
[3]张克宇,高耕,王倩雯,等.高性能锂离子电池草酸亚铁负极材料的可控制备[J].有色金属工程,2021,11(1):1-6.ZHANG Keyu,GAO Geng,WANG Qianwen,et al.Controlled fabrication of iron oxalate as high-performance anode materials for lithium-ion batteries[J]. Nonferrous Metals Engineering,2021,11(1):1-6.
[4] NOBUHARA K,NAKAYAMA H,NOSE M,et al.First-principles study of alkali metal-graphite intercalation compounds[J]. Journal of Power Sources,2013,243:585-587.
[5] BETZ J,BIEKER G,MEISTER P,et al. Theoretical versus practical energy:a plea for more transparency in the energy calculation of different rechargeable battery systems[J]. Advanced Energy Materials,2019,9(6):1803170. DOI:10.1002/aenm.201803170.
[6]陈娜,李安琪,郭子祥,等.钠离子电池普鲁士蓝材料结构构建及优化的研究进展[J].储能科学与技术,2023,12(11):3340-3351.CHEN Na,LI Anqi,GUO Zixiang,et al. Research progress on the construction and optimization of Prussian blue material structure for sodium-ion batteries[J]. Energy Storage Science and Technology,2023,12(11):3340-3351.
[7] YABUUCHI N,KUBOTA K,DAHBI M,et al.Research development on Sodium-Ion batteries[J].Chemical Reviews,2014,114(23):11636-11682.
[8] HWANG J Y,MYUNG S T,SUN Y K. Sodium-ion batteries:present and future[J]. Chemical Society Reviews,2017,46(12):3529-3614.
[9]黄钊文,李友朋,刘竞博,等.Sn基合金作为钠离子电池负极材料的研究进展[J].电源技术,2023,47(5):583-586.HUANG Zhaowen,LI Youpeng,LIU Jingbo,et al.Research progress of Sn based alloys as anode materials for sodium ion batteries[J]. Chinese Journal of Power Sources,2023,47(5):583-586.
[10] XU Y L,SWAANS E,BASAK S,et al. Reversible Na-ion uptake in Si nanoparticles[J]. Advanced Energy Materials,2015,6(2):1501436. DOI:10.1002/aenm.201501436.
[11]朱鑫鑫,丁益宏,王鹏,等.钠离子电池负极材料的研究进展[J].辽宁化工,2024,53(2):244-249.ZHU Xinxin,DING Yihong,WANG Peng,et al.Research progress of anode of sodium ion batteries[J].Liaoning Chemical Industry,2024,53(2):244-249.
[12]郭林,王焕锋,王少鹏.钠离子电池铁基氧化物负极材料研究进展[J].山东化工,2024,53(2):76-81.GUO Lin,WANG Huanfeng,WANG Shaopeng.Research progress of iron-based oxide anode materials for sodium-ion batteries[J]. Shandong Chemical Industry,2024,53(2):76-81.
[13] SHAN Y,LI Y,PANG H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries[J]. Advanced Functional Materials,2020,30(23):2001298.
[14] XIE X,SU D,CHEN S,et al. SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries[J]. Chemistry-An Asian Journal,2014,9(6):1611-1617.
[15] LI T,GULZAR U,BAI X,et al. Insight on the failure mechanism of Sn electrodes for Sodium-Ion batteries:evidence of pore formation during sodiation and crack formation during desodiation[J]. ACS Applied Energy Materials,2019,2(1):860-866.
[16] SURACE Y,JESCHULL F,SCHOTT T,et al.Improving the cycling stability of SnO2-graphite electrodes[J]. ACS Applied Energy Materials,2019,2(10):7364-7374.
[17] MU?OZ-MáRQUEZ Má,SAUREL D,GóMEZ-CáMER J L,et al. Na-ion batteries for large scale applications:a review on anode materials and solid electrolyte interphase formation[J]. Advanced Energy Materials,2017,7(20):1700463. DOI:10.1002/aenm.201700463.
[18] CHE H,CHEN S,XIE Y,et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy&Environmental Science,2017,10(5):1075-1101.
[19] ZHONG H,YANG G,SONG H,et al. Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays:excellent energy storage,catalysis,photoconduction,and field-emitting performances[J]. The Journal of Physical Chemistry C,2012,116(16):9319-9326.
[20] HU Z,LIU Q,CHOU S L,et al. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries[J].Advanced Materials,2017,29(48):1700606. DOI:10.1002/adma.201700606.
[21] CLEMENTI E,RAIMONDI D L,REINHARDT W P.Atomic screening constants from SCF functions.Ⅱ.atoms with 37 to 86 electrons[J]. The Journal of Chemical Physics,1967,47(4):1300-1307.
[22] LEFEBVRE-DEVOS I,OLIVIER-FOURCADE J,JUMAS J,et al. Lithium insertion mechanism in SnS2[J]. Physical Review B,2000,61(4):3110-3116.
[23] YE G,GONG Y,LEI S,et al. Synthesis of largescale atomic-layer SnS2 through chemical vapor deposition[J]. Nano Research,2017,10(7):2386-2394.
[24] MUTLU Z,WU R J,WICKRAMARATNE D,et al.Phase engineering of 2D tin sulfides[J]. Small,2016,12(22):2998-3004.
[25] LAO M,ZHANG Y,LUO W,et al. Alloy-based anode materials towa rd advanced sodium-ion batteries[J]. Advanced Materials,2017,29(48):1700622. DOI:10.1002/adma.201700622.
[26] TAN H,FENG Y,RUI X,et al. Metal chalcogenides:paving the way for high-performance sodium/potassium-ion batteries[J]. Small Methods,2020,4(1):1900563. DOI:10.1002/smtd.202070002.
[27] WEI Z,WANG L,ZHUO M,et al. Layered tin sulfide and selenide anode materials for Li-and Na-ion batteries[J]. Journal of Materials Chemistry A,2018,6(26):12185-12214.
[28] MA C,XU J,ALVARADO J,et al. Investigating the energy storage mechanism of SnS2-rGO composite anode for advanced Na-ion batteries[J]. Chemistry of Materials,2015,27(16):5633-5640.
[29] LI L,ZHENG Y,ZHANG S,et al. Recent progress on sodium ion batteries:potential high-performance anodes[J]. Energy&Environmental Science,2018,11(9):2310-2340.
[30] GAO P,ZHANG Y Y,WANG L,et al. In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS2nanostructures[J]. Nano Energy,2017,32:302-309.
[31] WANG X,YAO Z,HWANG S,et al. On the irreversible sodiation of tin disulfide[J]. Nano Energy,2021,79:105458.
[32] MA Z T,YAO Z P,CHENG Y C,et al. All roads lead to Rome:sodiation of different-stacked SnS2[J].Nano Energy,2020,67:104276. DOI:10.1016/j.nanoen.2019.104276.
[33] LUU T H T,DUONG D L,LEE T H,et al.Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium ion batteries[J].Journal of Materials Chemistry A,2020,8(16):7861-7869.
[34] SUN W,RUI X,YANG D,et al. Two-dimensional tin disulfide nanosheets for enhanced sodium storage[J].Acs Nano,2015,9(11):11371-11381.
[35] WANG J B,HUANG J J,HUANG S P,et al. Rational design of hierarchical SnS2 microspheres with S vacancy for enhanced sodium storage performance[J].ACS Sustainable Chemistry&Engineering,2020,8(25):9519-9525.
[36] TOMBOC G M,TESFAYE GADISA B,JUN M,et al.C a r b o n t r a n s i t i o n-m e t a l ox i d e e le c t r o d e s:Understanding the role of surface engineering for high energy density supercapacitors[J]. Chemistry-An Asian Journal,2020,15(11):1628-1647.
[37] WANG J J,LUO C,MAO J F,et al. Solid-State fabrication of SnS2/C nanospheres for high-performance sodium ion battery anode[J]. ACS Appl Mater Interfaces,2015,7(21):11476-11481.
[38] ZHANG S G,ZHAO H Q,WU M M,et al. One-pot solvothermal synthesis 2D SnS2/CNTs hybrid as a superior anode material for sodium-ion batteries[J].Journal of Alloys and Compounds,2018,737:92-98.
[39] LIU Z M,SONG T,KIM J H,et al. Partially reduced SnO2 nanoparticles anchored on carbon nanofibers for high performance sodium-ion batteries[J].Electrochemistry Communications,2016,72:91-95.
[40]郑雪梅,李杰平,付骁,等.废旧电池制备氧化石墨烯[J].有色金属工程,2023,13(8):1-8.ZHENG Xuemei,LI Jieping,FU Xiao,et al.Preparation of graphene oxide from waste batteries[J].Nonferrous Metals Engineering,2023,13(8):1-8.
[41] GE W Y,ZHANG G F,WANG P T,et al. Highly selective detection of ethanol based on hierarchical three-dimensional SnO2:combining experiment with first-principles calculation[J]. Sensors and Actuators A:Physical,2021,331:112994. DOI:10.1016/j.sna.2021.112994.
[42] JIN S L,GU F J,WANG J T,et al. Elaborate interface design of SnS2/SnO2@C/rGO nanocomposite as a high-performance anode for lithium-ion batteries[J].Electrochimica Acta,2022,405:139799. DOI:10.1016/j.electacta.2021.139799.
[43] LIU Z M,SONG T,KIM J H,et al. Partially reduced SnO2 nanoparticles anchored on carbon nanofibers for high performance sodium-ion batteries[J].Electrochemistry Communications,2016,72:91-95.
[44] QU B H,MA C,JI G,et al. Layered SnS2-reduced graphene oxide composite:a high-capacity,high-rate,and long-cycle life sodium-ion battery anode material[J].Advanced Materials,2014,26(23):3854-3859.
[45] JIANG Y,WEI M,FENG J K,et al. Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized g r a phene hybr id n a no sheet s[J]. Ener g y&Environmental Science,2016,9(4):1430-1438.
[46] JOO J,KIM T,LEE J,et al. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting[J]. Advanced Materials,2019,31(14):1806682. DOI:10.1002/adma.201806682.
[47] KWON T,J U N M,JOO J,et al. Na noscale hetero-i nter faces bet ween met a ls a nd met a l compounds for electrocatalytic applications[J]. Journal of Materials Chemistry A,2019,7(10):5090-5110.
[48] SU X H,SU D,SANG Z Y,et al. Shielded SnS2/SnS heterostructures on three-dimensional graphene framework for high-rate and stable sodium-ion storage[J]. Electrochimica Acta,2021,372:137800.
[49] WANG K,HUANG Y,QIN X L,et al. Synthesis of hollow SnO2/SnS2 hybrids and their application in sodium-ion batteries[J]. ChemElectroChem,2017,4(9):2308-2313.
[50] ZHANG S G,ZHAO H Q,YUE L C,et al. Fixedbed assisted synthesis SnO2/SnS2/CNTs composite for enhanced sodium storage performance[J]. Journal of Alloys and Compounds,2017,717:127-135.
[51] OU X,CAO L,LIANG X H,et al. Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability[J]. ACS Nano,2019,13(3):3666-3676.
[52] TAO S,WU D,CHEN S,et al. A versatile strategy for ultrathin SnS2 nanosheets confined in a N-doped graphene sheet composite for high performance lithium and sodium-ion batteries[J]. Chemical Communications,2018,54(60):8379-8382.
[53] FAN L L,LI X F,SONG X S,et al. Promising dual-doped graphene aerogel/SnS2 nanocrystal building high performance sodium ion batteries[J]. ACS Appl Mater Interfaces,2018,10(3):2637-2648.
[54] YANILMAZ M,CHEN L,CHENG H,et al. Flexible centrifugally spun N,S-Doped SnS2-including porous carbon nanofiber electrodes for Na-ion batteries[J].ACS Omega,2024,9(23):24665-24673.
基本信息:
DOI:10.20242/j.issn.2097-5384.2025.04.001
中图分类号:TQ134.32;TM912
引用信息:
[1]李倩,李常林,王硕然等.二硫化锡基钠离子电池负极材料研究进展[J].有色金属(中英文),2025,15(04):525-535.DOI:10.20242/j.issn.2097-5384.2025.04.001.
基金信息:
国家重点研发计划子课题(2023YFC3905904-03)~~